Project Report : CS 7643

Daniel Crawford
Georgia Institute of Technology
dcrawford@gatech.edu

Abstract

Time-Optimal Satellite Maneuvering is crucial to the us-
age of artificial satellites and is an important problem in
control theory. Here, I build off of the established success of
applying machine learning to this problem by framing it as
a Deep Reinforcement Learning Problem. By implementing
an Actor-Critic model that learns the distribution of move-
ments of three independent adjusters to orientation, I show
not only successful maneuvers, but time optimal maneuvers,
for orienting a satellite in both a close-distance and far-
distance rotation. Further, future steps are discussed to re-
fine this process and make the model more robust.

1. Introduction/Background/Motivation

This work is an attempt to use Deep Reinforcement
Learning methods to train a model to accurately and effi-
ciently orient a satellite in three-dimensional space. The
positioning and orientation of a satellite is important to its
function. I am seeking a model that can not only orient the
satellite to a correct position, but can do so in a time-optimal
manner. This is another important aspect of the work.

Currently, the methods to orient satellites are done man-
ually. That is, information is transmitted to a ground sup-
port team, which send maneuver instructions back, which
the satellite then executes. Audo et al. have found success
in using LSTM modeling to accomplish this. This takes ad-
vantage of the squential nature of the problem of control
theory based movements.

The manual approach that is currently being used is not
optimal because it makes large use of the limited computing
power on most satellites. If I am able to show that there is
promise in automating this procedure by simply placing a
model in the satellite to reduce the amount of required man-
ual maneuver time, then this will allow for more capability
to be put onto the satellite by increasing its computational
capacity.

Because I will be attempting to solve this with Deep Re-
inforcement Learning, the ’data’ that will be used is a sim-
ulation of the environment that a satellite operates within.

This means that I set up the environment where the satellite
was oriented in a particular position, and then was directed
to take an action, adjusted itself according to the prescribed
movements, and the returned the new state. This simulation
is the data used for a reinforcement learning project.

The orientation of a satellite was represented as a quater-
nion, as described by Bilimoria et al. [2] This accounts for
the three dimensions of movement, and for the extra dimen-
sion of rotation. The actions were represented as a vector of
length 3, which each entry from -1 to 1, reflecting the force
with which each thruster was pushing the satellite. Using
integration over this force and the quaternions I was able to
reflect the new orientation of the satellite.

2. Approach

In order to increase the baseline capabilities of automat-
ically orientating a satellite, I set up a training environment
and training process for the model to learn. To solve this
problem I took the first steps in performing a simple ma-
neuver. This means that I was training the model to be able
to map the actions of adjusting positions to states that lead
to a target orientation. To begin, I utilized a 10 degree ad-
justment of the satellite. This will be the first step in a multi
step learning process for the satellite for the model.

Utilizing machine learning to solve this problem has al-
ready been explored in Audo et al. [1] They were able to
achieve success with LSTM. This approach takes the novel
direction of using Deep Reinforcement learning to solve the
same problem. The disadvantage of this would lie in the dif-
ficulty in instantiating the simulation and securing enough
computation to train for all possible maneuvers and target
distances. However, the increased flexibility of Deep Rein-
forcement Learning, and robustness to changes in require-
ments makes this approach a good candidate for success.

I am utilized an Actor-Critic Model (with similar set up
and configuration to Assignment 5). This this is a control
problem having the model attempt to learn the distributions
of movements of 3 independent thrusters. Therefore, I will
set the model up to learn these distributions of the move-
ments based off of input form the current state (orientation
and current force applied by thrusters). In for the actor to



become accurate, I will optimize on the loss function

T
LP(H) = _E(s,a)N‘/r [Z logﬂ@(at|st)At] 5 (1)

t=1

where
At = Gt — V¢(St) (2)

is the advantage, calculated with return:

Gy = Z Rty (3)

To increase the accuracy of prediction of the Critic
Model, I will also optimize on the loss function

Ly = Bonr, [(G = V(1)) )

and to encourage exploration, I will also seek to mini-
mize the opposite of entropy:

LE(H) = E(s,a)wﬂ’ [_HQ(a‘S)] (@)

Note that 7y (a|s) reflects the distribution of of actions
to be taken given state s with parameters 6. This set up
is taken from assignment 5, and as I was able to achieve
success there, wanted to try and apply what I learned to a
new problem here.

2.1. Environment, Task, and Metrics

Naturally one of the most difficulty parts of of this
project was the coding of the environment. This required
much study and careful design. However, I was able to
leverage the previous work and translate the simulation (en-
vironment) to python. The environment was a deterministic
control environment where the input form each thruster was
a step (length 3 vector) and using quaternion integration was
able to simulate the movement over a time step. Therefore,
the metric used was success (binary), did it make it to within
5%of the target?

2.2. Sparse Reward Problem

The second, and biggest challenge that I anticipated was
the sparse reward problem. Since this project was about
navigating a satellite to a desired target, the reward had to be
shaped beyond the binary, achieved or not achieved. This is
an inherent and well studied problem in (Deep) Reinforce-
ment learning. I tried multiple reward systems, both contin-
uous functions and discrete rewarding system. Eventually I
found a system of rewards that seemed to work: for every
10% closer to the target orientation, the reward for that step
doubled. This was developed through an iterative process
and the realization that in order for the model to learn what
the target was, and how to move there, the rewards must

grow exponentially, not linearly, to signify stronger reward.
While linear may indeed work, I conjecture that exponen-
tially increasing reward for reach check point would per-
form better.

Another problem I had to address in the implementation
was the concern of time optimality. I am seeking to orient
the satellite in a time-optimal fashion, so, model must, in
some way account for the reward. I did try and use both
another loss function, and to add a time component to the
reward. I struggled to find success with these, but was able
to account for time by summing the reward of each step
and creating the episodic reward. Instead of training the
model to adjust the satellite and only be rewarded at the fi-
nal position, I calculated the reward from each time step and
summed together. This, then, rewarded the model for reach-
ing the target position quicker (as it would accrue more of
an exponentially higher reward) but also stay there (as op-
posed to randomly swinging in and out of the target posi-
tion, again to gain more reward.)

3. Experiments and Results

Success was measured first by achieving the correct ori-
entation. Secondly, the time taken (number of steps done)
was accounted for and considered when measuring optimal-
ity. These two components make up a successful run.

While it will be be a good extensions to run a set of
trial simulations with the trained networks, the scope of this
project, we will stick to analyzing the results of the training.
As a test simulation will be the same as the training simu-
lation (we will not present the model with a novel learning
scenario) I will use the moving average of the most recent
100 episodes to convey overall success of the model. Both
a small (10 degree) and big (45 degree) maneuver will be
be shown here.

3.1. Small Degree Maneuver

Final Angle Distance: 10 deg. Rotation

Final Angle Diff
= = ~ ~ w w
=3 & S ) & &

w

. . | ! ] ,
0 2000 4000 6000 8000 10000
Episode

This figure shows the individual and average trend for
10,000 episodes of the 10 degree adjustment of the distance
from target at the final episode. Note that the way I have the
simulation set up is by having the satellite start 10 degrees
away form the target and propel itself to where it needs to



go. We can see that after about 4000 episode, there is a
general decrease in the average final angle distance. The red
horizontal line reflect the 5% of target distance that we are
setting as the goal. (This will be discussed later.) Note there
are two main reasons that that the trend is not lower given
all of the success (as shown on the next plot). First, this is
the FINAL position distance, so the actor may have moved
the satellite after achieve a successful movement. Second
the movements are so fine tuned that it will be difficult for
the actor to move, due to physical restraints, the satellite
only a fraction of a degree.

Episode Success: 10 deg. Rotation

2000 4000 6000 8000 10000
Episode

o

The plot of successes here (orange indicate sum of last
100 rows, with each success valued at 1) shows a positive
trend, which suggests that the agent is learning over time
to complete this task. With respect to time optimality, I
have set the known time (more on this later too) as the max
time, so any success is within the current state-of-the-art
bounds. It seems that with more training more success will
be reached.

1e7 Episode Policy Loss: 10 deg. Rotation

0.8

o o
» ES

Policy Loss

e
¥

0.0 4

2000 4000 6000 8000 10000
Episode

o

1e10 Episode Value Loss: 10 deg. Rotation

101

Value Loss
14
o

14
ks

0.2 q

0.0 1

0 2000 4000 6000 8000 10000
Episode

Episode Entropy Loss: 10 deg. Rotation

Entropy Loss
MWW
© o =

~
@

I
o

2000 4000 6000 8000 10000
Episode

o4

These three plots show the loss function values
(weighted). Note the correlations in spikes. These reflect
the large rewards that are given for finding and staying at
the desired orientation. The general downward slope the the
entropy loss suggests that exploration decreased as training
went on, which is of course desirable as to create a more
stable model.

Episode Rewards: 10 deg. Rotation

50000 1

40000 1

30000 4

Rewards

20000 4

10000

0 2000 4000 6000 8000 10000
Episode

The rewards, as discussed earlier, were set up to be expo-
nentially increasing in value for linearly decreasing distance
from the target orientation.



3.2. Large Degree Maneuver

Final Angle Distance: 45 deg. Rotation

Final Angle Diff

0 2000 4000 6000 8000 10000
Episode

For the large degree maneuver, we see a much more pro-
nounced decrease in the distance of the satellite to the target
in the final step. Because the angle of desired rotation was
so much larger, the reward was able to take effect of larger
span of values and push the satellite to the correct position.
Also note how the increase in target movement muted the
effects of attempting very fine maneuvers.

Episode Success: 45 deg. Rotation

804

o
=]

Success

5

0 2000 4000 6000 8000 10000
Episode

The accumulated count of successes over the previous
100 episodes accumulates dramatically as training goes on.
This suggests that there is indeed some kind of learning hap-
pening, that the agent is able to reliably make it to the de-
sired orientation (ie not jsut out of chance).

1e7 Episode Policy Loss: 45 deg. Rotation

Policy Loss
o
o

2000 4000 6000 8000 10000
Episode

o

1e10 Episode Value Loss: 45 deg. Rotation

Value Loss
P
)
S

2000 4000 6000 8000 10000
Episode

o

Episode Entropy Loss: 45 deg. Rotation

754

7.04

o
n

Entropy Loss

o
°

5.0 1

2000 4000 6000 8000 10000
Episode

o

The Policy Loss can be shown to be generally decreas-
ing, which tracks with understanding. The Value loss has an
odd convergence in the middle, which I am not really sure
how to explain other than chance. The Entropy loss, jsut
as in teh 10 Degree maneuver shows decreasing which we
would expect to see.

Episode Rewards: 45 deg. Rotation

60000 4

50000 4

40000 1

30000 4

Rewards

20000 4

10000 q

2000 4000 6000 8000 10000
Episode

oA

The episodic reward of the simulation increases in line
with what would be expected for a learning agent. As such,
I am comfortable sating that the agent was indeed learning.

3.3. Discussion of Results

For both the small and big maneuver, I used the same hy-
per parameters and agent settings to train the two. It appears
that the agent did not plateau on its learning and could have
achieved higher success rates and greater rewards. I am con-
fident, however, that I accomplished my goal of creating an
agent that could learn time-optimal maneuvering.



4. Other Sections

5. Relation to Deep Learning

With any Deep Learning problem, we need to consider
what features the network is learning. I think that, for this
project, the features that the network is picking up on is the
tie between orientation and reward. When I used continuous
reward functions, there was not as much success as discrete.
So, I think that the model was able to find the features of
orientation that correspond, reliable, and exponentially in-
creasing reward. This then allowed it to take the action to
acheive that reward.

The structure of the problem was that of a control prob-
lem. It was very similar to Assignment 5. Therefore, I
sought to optimize the distribution of movements on the
thrusters of the satellite to orient it optimally given a cur-
rent state. This independent control of individual thrusters
reflects the control theory aspects of the problem itself and
is a good candidate for the reason that this approach worked
(over my Deep-Deterministic Policy Gradient approach).

The model itself consisted of an input layer, 2 fully con-
nected layers, and an output layer. Each of these had learned
parameters. These were learned with ADAM optimizer,
done in PyTorch. (I opted at have all of the loss functions be
optimized together.) The hyper parameters were tuned man-
ually and not learned. I found greatest success with hidden
layer size of 128 nodes, ~ of 0.99999, and a learning rate of
0.0001

The neural network expected a vector of length 7 as its
input: the first 4 entries reflected the current orientation
(quaternion) and the second 3 reflected the current force
(scaled) applied by the thrusters. All of these value were
in [—1, 1]. There was not so much data to pre-process but
building the simulation was a crucial task. I had to ensure
that the simulation was valid and accurately reflected real-
world movements. The loss functions, which were previ-
ously discussed consisted of policy loss, to perform more
optimal movements, value loss, to assess the value of move-
ments more accurately, and entropy loss to encourage ex-
ploration were used. The loss function optimized on was a
weighted sum of these three.

Over-fitting was not a concern here, and the model did
appear to generalize well to both small and large move-
ments. A validation run will be needed to be more confident
in the results, however the aim to create an agent that can
learn was accomplished.

What hyper parameters did the model have? How were
they chosen? How did they affect performance? What opti-
mizer was used?

The learning rate used was 0.0001. I found that a larger
learning rate produced an unstable model which would rise
and fall unpredictably in reward and performance. The ~
value was perhaps the most important value I had to tune.

IT was only with high value (> 0.999) that I was bale to
achieve best success. It appears that for this problem a large
amount of weight is needed across recent actions.

The deep learning framework PyTorch was used to com-
plete this project.

What existing code or models did you start with and what
did those starting points provide? All code (Environment,
Metrics, and Learning) were coded solely by myself. I was
able to leverage code in MatLab Provided by the authors of
Audo et al. [1] for this project, however needed to rewrite
everything in order understand and have it work with my
code base.

Briefly discuss potential future work that the research
community could focus on to make improvements in the
direction of your project’s topic.

Future research for this project is ongoing. The next step
would be to run many test simulations. I also thing that
expanding the number different targeted degree movements
is important. A system of Curriculum Learning Could be
set up in order to have the agent learn to orient to multiple
different target points.

6. Nature of the Project

This project was born out of a professional network that
I have with the Naval Post-Graduate School, out of Mon-
terey, California. LTC Brian Wade, Ph.D, and Professor
Mark Karpenko were able to provide me with the initial
problem. From there, I was able to leverage the MatLab
code of Dr. Karpenko for the basic simulation, however all
code used for this project was written solely by by self and
for this course.

However, from them I able able to ascertain two things.
The first was the maximum possible time it would take a
satellite to orient itself. In order to ensure time-optimal ma-
neuvers, | cross referenced the max number of steps in the
simulation environment that I would allow the agent to take
with the theoretical maximum. This ensured that the agent
was learning in a time dependent fashion. A future area of
research would be trying to do this without the artificial cap.
Second, as subject-matter-experts, both of my point of con-
tacts suggested that the agent need only to be within 5% of
the target orientation to be deemed successful. They stated
that from there, manual maneuvers would be possible and
efficient. More of their work, along with LT Vincent Audo,
can be found in the referenced papers.

7. Work Division

All work was done by Daniel Crawford for the purposes
of this course: Table 1.



Student Name Contributed Aspects | Details

Daniel Crawford Entire Project Coded simulation in Python, modified code from As-
signment 5 to fit specifications, trained the agent, hyper-
tuned, sculpted reward function, captured results.

Note that this project was taken individually, with the explicit written permission of Prof. Kira,
https://edstem.org/us/courses/15925/discussion/1170203

Table 1. Contributions of team members.

7.1. References

[1] Audo, V., Karpenko, M., Wade, B. M. (2020, Oc-
tober). IMPLEMENTATION OF TIME-OPTIMAL AT-
TITUDE MANEUVERS USING LONG-SHORT TERM
MEMORY NEURAL NETWORK. Naval Postgraduate
School.

[2] Bilimoria, KD., Wei, B., (1993, June). Time-Optimal
Three-Axis Reorientation of a Rigid Spacecraft. JOUR-
NAL OF GUIDANCE, CONTROL, AND DYNAMICS.





